Academic Council Meeting No. and Date : July 06, 2023Agenda Number : 2Resolution Number : 23,24 / 4.2 & 4.7

Vidya Prasarak Mandal's

B. N. Bandodkar College of Science (Autonomous), Thane

Syllabus for

Programme : Bachelor of Science Specific Programme : Biotechnology

[T.Y.B.Sc. (Biotechnology)]

Revised under Autonomy

PREAMBLE

Biotechnology is one of the most promising applied branches of modern biology. Developing with a fast pace, the field is drawing attention in youth interested in interdisciplinary studies. Continuing the Choice Based Credit System (CBCS) implemented by the esteemed University from the academic year 2016-2017; with the objective of exposing preliminary learners to concepts in and applications of basic Biotechnology, the syllabi of F.Y.B.Sc. and S.Y.B.Sc. Biotechnology have been restructured under the autonomous status of VPM's B. N. Bandodkar College of Science, according to the CBCS pattern, and are being implemented since 2021-22. The approach towards restructuring of syllabus has been to maintain the pace in concept building for better hierarchical learning and also for updating the learner with advances in the field of biotechnology.

The T.Y.B.Sc. syllabus is aimed at equipping the students with knowledge in various fields of Biotechnology; such as Cell Biology, Virology, Recombinant DNA Technology, Transgenic Plants & Animals, Analytical Techniques, Bioinformatics and Biostatistics, Biochemistry, Bioprocess Technology Pharmacology and Neurochemistry. Topics like drug development, advanced enzymology and applications of Biotechnology have been newly introduced to keep pace with trends in industry.

The entire graduate program syllabus aims to cater to the needs of diverse groups of students, those interested in going for research career, Biotechnology-management studies, taking up jobs as well as aspiring entrepreneurs.

Eligibility:

Student should have passed semester I, II or Student should have passed semester III, IV, that is, should pass either FY.B.Sc or S.Y.B.Sc all subjects/ courses. such student stands eligible to seek admission at T.Y.B.Sc semester V.

Duration: 1 year

Mode of Conduct: Laboratory Practical / lectures

Program Specific Outcome: Students would be able to study basis of biological world by knowing biochemistry, genetics, immunology, cell structure and functions, along with various biophysical techniques. Students would be able to apply knowledge to make positive use of biological systems for betterment of community and for sustainable development.

VPM's B.N. Bandodkar College of Science (Autonomous), Thane

T.Y.B.Sc. (Biotechnology)	
Structure of Programme	

Course Code	Course Title	No. of lectures	Credits
BNBUSBT5T1	Cell biology	60	2.5
BNBUSBT5T2	Virology, Advanced Enzymology and Analytical Techniques	60	2.5
BNBUSBT5T3	Recombinant DNA Technology, Transgenic Plants & Animals	60	2.5
BNBUSBT5T4	Marine Biotechnology	60	2.5
BNBUSBT5T5	Bioinformatics and Biostatistics	48	2
BNBUSBT5P1	Practical Based on BNBUSBT5T1 & BNBUSBT5T2	72	3
BNBUSBT5P2	Practical Based on BNBUSBT5T3 & BNBUSBT5T4	72	3
BNBUSBT5P3	Practical Based on BNBUSBT5T5	48	2
	Total	480	20

Course Code	Course Title	No. of lectures	Credits
BNBUSBT6T1	Biochemistry	60	2.5
BNBUSBT6T2	Bioprocess Technology	60	2.5
BNBUSBT6T3	Pharmacology and Neurochemistry	60	2.5
BNBUSBT6T4	Applications of Biotechnology, Gene sequencing & editing and Environmental Biotechnology	60	2.5
BNBUSBT6T5	Agribiotechnology	48	2
BNBUSBT6P1	Practical Based on BNBUSBT6T1 & BNBUSBT6T2	72	3
BNBUSBT6P2	Practical Based on BNBUSBT6T3 & BNBUSBT6T4 + project work/ internship/ entrepreneurial work	72	3
BNBUSBT6P3	Practical Based on BNBUSBT6T5	48	2
	Total	480	20

Teaching pattern:

One (01) Credit would be of thirty- forty (30-40) learning hours; of this more than fifty percent of the time will be spent on class room instructions including practical as prescribed by the University. Rest of the time spent invested for assignments, projects, journal writing, case studies, library work, industrial visits, attending seminars / workshops, preparations for examinations etc. would be considered as notional hours. The present syllabus considers (60L as class room teaching and 15 lectures as Notional hours/ paper). Each lecture duration would be 48 min. The names of the reference books provided in the syllabus are for guidance purpose only. Students and faculty are encouraged to explore additional reference books, online lectures, videos, science journals for latest/ additional information.

Semester V

Course TitleCreditsCell biology2.5	No. of lectures
nd regulators of cell cycle progression. owledge on cell signaling pathway. nted to the various model organisms used to study the process of developm	nent.
 The eukaryotic cell cycle Phases of cell cycle Regulation of the cell cycle by cell growth and extracellular signals Cell cycle checkpoints Restricting DNA replication to once per cell cycle Regulators of cell cycle progression Protein kinases and cell cycle progression (Discovery of MPF) Families of cyclins and cyclin dependent kinases (Identification of cyclins) Growth factors and the regulation of G1 Cdks DNA damage checkpoints The events of M phase Stages of Mitosis Cdk1/ Cyclin B and progression to metaphase The spindle assembly checkpoint and progression to anaphase Cytokinesis Meiosis and fertilization The process of meiosis Regulation of oocyte meiosis Fertilization Frestilization Apoptosis (Programmed Cell Death) Programmed cell death versus accidental cell death: Apoptosis versus Necrosis The Extrinsic Pathway of Apoptosis Linking apoptosis to the cell cycle by p53 	15
 The basic elements of cell signaling systems A survey of extracellular messengers and their receptors G protein-coupled receptors and their second messengers (signal transduction by G protein-coupled receptors, second messengers) Protein-tyrosine phosphorylation as a mechanism for signal transduction JAK STAT and TGF beta/SMAD pathways Signaling networks: (feedback and crosstalk, networks of 	15
	 nes: Learners will be able to: dregulators of cell cycle progression. owledge on cell signaling pathway. ited to the various model organisms used to study the process of developm and with basics of cancer biology. 1. The eukaryotic cell cycle Phases of cell cycle cycle Regulation of the cell cycle by cell growth and extracellular signals Cell cycle checkpoints Restricting DNA replication to once per cell cycle 2. Regulators of cell cycle progression Protein kinases and cell cycle progression (Discovery of MPF) Families of cyclins and cyclin dependent kinases (Identification of cyclins) Growth factors and the regulation of G1 Cdks DNA damage checkpoints 3. The events of M phase Stages of Mitosis Cdk1/ Cyclin B and progression to metaphase The spindle assembly checkpoint and progression to anaphase Cytokinesis 4. Meiosis and fertilization The process of meiosis Regulation of oocyte meiosis Fertilization 5. Apoptosis (Programmed Cell Death) Programmed cell death versus accidental cell death: Apoptosis The Intrinsic Pathway of Apoptosis The Intrinsic Pathway of Apoptosis The Intrinsic Pathway of Apoptosis 1. The basic elements of cell signaling systems 2. A survey of extracellular messengers and their receptors 3. G protein-coupled receptors and their second messengers (signal transduction by G protein-coupled receptors, second messengers) 4. Protein-tyrosine phosphorylation as a mechanism for signal transduction

Unit III: Developmental biology	 Overview of how the modern era of developmental biology emerged. Concept of potency, Embryonic stem cells, Cytoplasmic determinants, differential gene expression, terminal differentiation in cells, concept of fate maps. Concept of Morphogens with examples, Conditional and autonomous specification, cell fate and commitment- Stages of development: Cycle of Life, Zygote, blastula, gastrula, neurula Model organisms in developmental biology Pattern formation in Drosophila, Sea urchin fertilization and axis specification, Vulva development and mutation in C. elegans, Fertilization in frog 	15
Unit IV: Cancer biology	 Types of cancer The development and causes of cancer grade and stage of neoplasms Tumor staging: clinical, imaging, surgical, pathologic staging Properties of cancer cell, transformation of cells in culture, The Theory Of "Hits" (example of 'five-hit scenario' for colorectal cancer as illustrated by Ruddon) Carcinogens, metabolic activation of carcinogens, Interaction of Chemical Carcinogens with Oncogenes and Tumor Suppressor Genes, endogenous carcinogens- role of spontaneous mutations, irradiation carcinogenesis, role of oxidative stress and aging (one example of each) Carcinogen-Induced Epigenetic Changes Retro-oncogenes, Proto-oncogenes and Oncogenes (ras, bcr-abl), Tumor suppressor genes (Rb and p53), gain-of function vs. loss of function mutation, role of oncogenes and tumor suppressor genes in tumor development Cancer Treatment: Retinoic acid, Herceptin, Erbitux, Imatinib Molecular approaches to cancer treatment: Prevention and early detection 	15

Course Code BNBUSBT5T2	Course Title Virology, Advanced Enzymology and Analytical Techniques	Credits 2.5	No. of lectures
 Understand of cancer. Have better Gain an understand 	omes: Learners will be able to ad various mechanisms of viral replication, antiviral therapies er understanding of practical aspect of enzymology. Inderstanding of the basic principle and instrumentation of ana on to some applications of these analytical techniques	lytical technic	ques.
Unit I: Virology	 A quick brush up to basics of Viruses learnt in FY, Baclassification & Taxonomy (ICTV), Concept of satellic helper viruses, largest virus Mimivirus Viral Life cycle: Influenza, HIV, Bacteriophage T4 Diagnostic methods in Virology Purification, Cultivation, Enumeration, Detection Cytocidal infections and cell damage Role of viruses in cancer: Viral oncogenes, Examples involved in cancer: EB, HPV, HBV, Kaposi's Sarcom Control of viral diseases by immunization (Brush up t Vaccines), Antiviral chemotherapy Viroids and Prions 	ite and of viruses a	15
Unit II: Advanced Enzymology	 Need for isolation of enzymes, Identification of enzyme sources. Methods of Isolation of enzyme Ammonium sulphate precipitation and dialysis Methods of purification (Tabulation) Some representative techniques employed initially for isolation Choice of methods of purification, Terms related to en purification Enzyme immobilization Non-canonical enzymes: abzymes, synzymes, ribozym 	enzyme nzyme	15
Unit III: Analytical Techniques-I	 Principle, instrumentation, working and applications of following spectroscopic techniques: 1. Revision of basics 2. Raman spectroscopy 3. Atomic Absorption spectroscopy 4. Flame atomic emission spectroscopy 5. Real time (SYBR/ Taqman), RT PCR, Nested PCR (PCR shifted from sem 4 to sem 5, nested PCR newly 6. Introduction to imaging techniques (PET, CT) 	Variations of	15

Unit IV: Analytical Techniques-II	 Basics of chromatography HPLC: Normal and reverse phase chromatography Principle, Instrumentation and applications of the following types of chromatography: Size exclusion-gel filtration Ion exchange chromatography, Affinity chromatography, covalent chromatography, Chromatography for Nucleic acids and DNA binding proteins (DNA cellulose chromatography), use of oligo-dT columns for eukaryotic mRNA isolation Hydrophobic interaction chromatography Gas Liquid Chromatography (GLC) 	15
---	---	----

Course Code BNBUSBT5T3	Course Title Recombinant DNA Technology, Transgenic Plants & Animals	Credits 2.5	No. of lecture s
 Learn enzy raise trans Understand Apply known 	omes: Learners will be able to: ymes and vectors used in recombinant DNA technology an genic plants and animals. d genomic and cDNA libraries. owledge of RDT to create transgenic plants and animals. ortant applications of transgenic plants and animals.	d their applica	tions to
Unit I: Recombinant DNA Technology-I	 Enzymes in RDT: TDT, polynucleotide kina phosphatase, T4 phage polymerase: properties and app Cutting and joining DNA: Restriction enzymes: Typ nomenclature, blunt Vs. sticky end cutters, rare Vs free Calculation of probability of cutting a given pile isoschizomers and neoschizomers, star activity, complete digestion of DNA DNA ligase: definition, mode of action, sources and temperature for ligation, use of linkers Cloning vectors-Plasmids (pUC series), lambda phag vectors, cosmids, phagemids M13, shuttle vectors, expression vectors (introduction) Methods of gene transfer in prokaryotes: transfer electroporation, in vitro packaging followed by transde 	plications es, properties, equent cutters, ece of DNA, partial and nd properties, e replacement YAC vectors, ransformation,	15
Unit II: Recombinant DNA Technology -II	 Genomic, chromosomal and cDNA libraries: de construction Radioactive and non- radioactive probes, synthes (random primer, nick translation, end labelling), autor Southern hybridization (RE digestion, neutralization, blotting, baking/ crosslinking, pre-h hybridization, post-hybridization washes, detection), Northern and Western hybridization for library screen Restriction mapping FISH, <i>in situ</i> hybridization: pros and cons Advantages and drawbacks of PCR Vs. hybridization Complementation of mutants Chromosome walking 	is of probe adiography denaturation, ybridization,	15
Unit III: Transgenic plants	 Plant transformation with the Ti plasmid of A.tun plasmid derived vector systems (cointegrate, binary, r Transfer of T-DNA Physical methods of transferring genes to plants: elect microprojectile bombardment, liposome mediated fusion Advantages and drawback of each method highlight 	nini-binary) troporation, l, protoplast	15

	 associated with protoplast regeneration 5. Marker vs. reporter genes 6. Plant viruses as vectors: CaMV, Geminivirus, Agroinfection, TMV- pros and cons 7. Transient vs stable expression 8. Application of TG plants: Improvement of seed quality protein 9. Chloroplast engineering 	
Unit IV: Transgenic animals	 Transgenic mice- methodology-retroviral method, DNA microinjection, ES method genetic manipulation with cre-loxP Definitions and significance: gene knock-out and gene knock- down GFP Applications of TG mice: model for Alzheimer disease TG livestock: production of pharmaceuticals in milk-Pharming Cloning by nuclear transfer: The Dolly sheep Transgenic fish 	15

Course Code BNBUSBT5T4	Course Title Marine Biotechnology	Credits 2.5	No. of lectures
 Understand Comprehenresources. Gain know 	mes: Learners will be able to: I the concepts associated with marine biotechnology. Ind the difference in handling and cultivation of marine re vledge of current research in marine biotechnology and in various fields.		
Unit I: Introduction to Marine Biotechnology and bioprospecting	\mathbf{I} \mathbf{I} \mathcal{U}'	Mangroves, sedimentary ts (Oceanic, and Their ethods for - Bioactive	15
Unit II: Marine drugs and enzymes	 A. Drugs from Marine organisms: 1. Drugs from Marine organisms: Pharmaceutical comp marine flora and fauna - marine toxins, antiviral and a agents 2. Approved Marine Drugs as Pharmaceuticals B. Marine Microbial Enzymes: Marine Extremozymes and Their Significance: Thermost Adaptivity, Extreme pH Tolerance, Halotolerance, Baroph Current Use of Marine Microbial Enzymes 	ntimicrobial ability, Cold	15
Unit III: Marine Nutraceuticals	 Marine Functional Foods: Marine Sources as Healthy Foods or Reservoirs o Ingredients Marine-Derived Ingredients with Biological Properties Functional Foods Incorporating Marine-Derived Ing Marine Bioactives as Potential Nutraceuticals, Carbohydrates, Polyunsaturated Fatty Acids, Soluble Calcium, Fish Collagen and Gelatin, Marine Probiotics 	redients Functional	15

	A. Marine Bioresources: Marine Secondary Metabolites: Halogenated Terpenes, Steroids and Sterols, Polyphenols Marine Proteins, Marine Lipids	
	B. Cosmetics from Marine Sources:	
	Cosmetics: Definition and Regulations,	
	Cosmeceuticals, Target Organs and Cosmetics	
Unit IV:	Delivery Systems	15
Cosmetology	Components of Cosmetics: Excipients, Additives (Antioxidants,	15
	Antimicrobials, Perfumes and Colorants), Water	
	Major Functions of Some Marine Components in Cosmetics and	
	Cosmeceuticals: Physicochemical	
	and Technological Properties, Biological Activities	
	Treatments Based on Marine Resources: Firming, Cellulite, Hair	
	Growth Disorders	
	Products Based on Marine Resources	

Course Code BNBUSBT5T5	Course Title Bioinformatics and Biostatistics	Credits 2	No. of lectures
 Know the Gain an ur Understan Know the 	mes: Learners will be able to: various nucleic acid and protein databases iderstanding of the basic concepts in Bioinformatics and Bios d and use the databases and tools for alignment used in bioin standard statistical distributions problems based on t-test, Z-test and Chi-square test		
Unit I: Biological databases	 Definition, Aims, Scope, Applications and li bioinformatics Databases, types of databases, Biological databases: Primary databases, databases, specialized databases, interconnecti- biological databases Pitfalls of biological databases Nucleic acid sequence databases: EMBL, DDBJ Protein structure database: PDB Protein sequence database: PIR, SWISS-PROT Protein structural visualization: Rasmol, Swiss-F Protein structure classification: CATH and SCO 	secondary ion between PDB viewer	12
Unit II: BLAST and Sequence alignment	 Various File Formats for Biomolecular Sequences FASTA Basic concepts of sequence analysis: Sequence versus Sequence similarity, Sequence simila sequence identity (Only concepts, no calculation) Definition of sequence alignment Pairwise Alignment: Global Alignment (brief), Loc Alignment, Dot matrix and dynamic program penalty Scoring matrices: Nucleotide and Amino acid sco (PAM and BLOSUM) Database similarity searching, Unique requirements searching, Heuristic database searching, Basic loca search tool (BLAST) and its variants, BLAST Outp Multiple Sequence Alignment: The need for M concepts of MSA, Progressive approach and Concept of Phylogeny, Phylogenetic tree 	e homology rity versus cal Pairwise nming, gap oring matrix of database al alignment out Format ASA, Basic	12

Unit III: Biostatistics I	 Design of experiments Introduction to Binomial distribution and Poisson distribution Normal distribution: Overview, standard normal distribution, Application of normal distribution Student t distribution Basics of hypothesis testing Testing a claim about a mean 	12
Unit IV: Biostatistics II	 Inferences about two means (independent and dependent samples) Correlation, Regression Chi-square test 	12

Course Code BNBUSBT5P1	Course Title Practical Based on BNBUSBT5T1 & BNBUSBT5T2	Credits 3	No. of lectures
1.	Ammonium sulphate precipitation and dialysis		
2.	Demonstration: Separation of components from a mixture by: i. Size exclusion chromatography ii. Ion exchange chromatography iii. Affinity chromatography		
3.	Monitoring protein purification: protein estimation by Bradford	d method	
4.	Monitoring protein purification: Separation of proteins by SDS	S-PAGE	
5.	Comparison of crude and purified enzyme activity		
6.	Detection of Vitamin B12 by paper chromatography: Bioautog	raphy	72
7.	Immobilization of yeast cells for invertase production		
8.	Estimation of phosphatase enzyme activity		
9.	Demonstration: Chick embryo candling and inoculation metho	ds	
10.	Bacteriophage assay		
11.	Assignment: identify a carcinogen, its metabolic activation, if the cancer it leads to	f any, and	

Course Code BNBUSBT5P2	Course Title Practical Based on BNBUSBT5T3 & BNBUSBT5T4	Credits 3	No. of lectures
1.	Study of any 5 marine bacteria and algae (Macro and micro)		
2.	Identification of Shrimp/ sponges		
3.	DPPH assay for antioxidant extracted from marine algae		
4.	Extraction of carotenoids from marine algae/Bacteria/Fungi		
5.	Extraction and estimation of Gelatin.		
6.	Extraction and estimation of Collagen.		
7.	Extraction of alkaloids from marine organisms and their separat TLC.	ion by	72
8.	Genomic DNA Extraction from Animal cells and agarose gel electrophoresis.		
9.	Restriction enzyme digestion		
10.	Ligation		
11.	Preparation of competent cells and Transformation in E. coli.		
12.	Blue -white selection		
13.	Sothern Hybridization demonstration (up to blotting step)		

Course Code BNBUSBT5P3	Course Title Practical Based on BNBUSBT5T5	Credits 2	No. of lectures
1.	Familiarization with NCBI, EMBL, DDBJ, PIR, KEGG Databa	ses.	
2.	Use of NCBI BLAST Tool		
3.	Pairwise alignment		
4.	Multiple Sequence Alignment and Phylogeny		
5.	Classification of proteins using CATH/ SCOP		
6.	Visualization of PDB molecules using Rasmol		48
7.	Study of normal distribution of data using MS Excel/ R-softwar	e	
8.	 Hypothesis testing using MS Excel/ R-software. a. T-test b. Z-test c. Chi-square test 		
9.	Study of correlation of data using MS Excel/ R-software.		
10.	Study of regression of data using MS Excel/ R-software.		

Semester VI

Course Code BNBUSBT6T1	Course Title Biochomistry	Credits 2.5	No. of
Learning Outco 1. Relate to their regul 2. Comprehe 3. Students v	Biochemistry Demes: Learners will be able to: the pathways of carbohydrate metabolism in different livin latory mechanisms. end structural hierarchy of proteins. will able to explain metabolic pathways of lipids. I d the biological processes and systems applicable to human n	ng beings ar	lectures
Unit I: Protein Biochemistry	 Primary structure: The function of protein depends of acid sequence Protein sequences can elucidate the history of life on e Secondary structure: Peptide bonds restrict possible secondary conformation Alpha helix Beta sheets Loops and bends Tertiary and Quaternary structure Fibrous proteins: Collagen, Alpha keratin Globular proteins: Myoglobin and hemoglobin Defects in Protein Folding Provide the Molecular Wide Range of Human Genetic Disorders Protein denaturation 	earth ns	15
Unit II: Carbohydrate Biochemistry	 Quick brush up to metabolism learnt in SY, Reciproca of metabolic pathways (Glycolysis & Gluconeogenesi Interconnections of metabolic pathways Biosynthesis & regulation of Peptidoglycan in Bacteri Synthesis of Starch, Sucrose & Cellulose in Plants Metabolism & regulation of Glycogen in Animals Common metabolic disorder: Lactose Intolerance 	s)	15
Unit III: Lipid metabolism	 Lipids- classification, membrane lipids, triacylglycero Digestion, Mobilization and transport Catabolism: Oxidation of fatty acids: Beta, alpha oxidation, Oxidation of unsaturated fatty acids, Oxida chain fatty acids Anabolism: Synthesis of saturated (fatty acyl synthas synthesis of palmitic acid from acetyl CoA). unsat acids synthesis Ketone Bodies Cholesterol synthesis Disorders related to cholesterol 	and omega ation of odd se complex,	15

Unit IV: Nutrition	 Basics of energy metabolism, nutrition & dietetics – Unit of measuring energy, calorific value of food, BMR & factors affecting it, A Balanced diet, Nutrition in health & diseases (protein energy malnutrition) and Over nutrition (obesity) Vitamins- Dietary sources, bioactive form, functions and disorders associated with fat soluble (A D E K) and water-soluble vitamins. Minerals - Overview of important trace elements and minerals, Physiological and biochemical functions of principal and trace elements (Na, K and Ca - in detail). 	15
-----------------------	--	----

Course Code BNBUSBT6T2	Course Title Bioprocess Technology	Credits 2.5	No. of lectures
 Understand Be aware of Know the index 	nes: Learners will be able to: milk processing technology, safety considerations in product f the conventional and modern methods of drug discovery. ntricacies of representative fermentation processes. GMP practices and learn quality assurance & quality control		ing.
Unit I: Dairy Technolo	 Normal flora of milk, Changes in raw milk, Mica Quality of Milk & Milk Products: SPC, colif LPC, thermophilic, psychrophilic counts and DM Raw and fluid milk products Pasteurization pasteurization, Preservation methods (drying, e condensation). Microbiology of butter, Yogurt, cultured butt milk and whey (flowsheet). Cheese: Cheddar, Cottage, Processed Chee Defects. Enlist other cheese and associated micro Rapid detection of milk borne pathogens- N based methods, immunological assays, biosensor 	form count, AC. A & Ultra- evaporation, ermilk, dry se, Cheese borganisms. fucleic acid	15
Unit II: Basics of drug discovery proce	0. CCII-Dascu assays		15

	 12. Computer aided drug design 13. Combinatorial chemistry 14. Genomic methods in the search for new drugs, including antibiotics 15. Search for drugs among unculturable microorganisms 16. Approval of New Antibiotic and other Drugs by the Regulating Agency 17. Pre-submission work by the pharmaceutical firm 18. Submission of the new drug to the FDA 19. Approval 20. Post approval research 21. DSP: Covered in SY syllabus 	
Unit III: Fermentation processes and microbiological assays	 Fermentation process for Penicillin Vitamin B12 Glutamic acid ethanol Mushroom Analytical microbiology for assaying the products Introduction Methods Advantages and limitations Assay for antibiotics, vitamin, amino acid, trace elements, bioassay by blotting and hybridization, automation 	15
Unit IV: QA/QC	 Definitions: Manufacture, Quality, Quality control, concept of QC. Concept of GMP and requirements of GMP implementation. Documentation and regulatory certification of GMP. Variables of batch process. QA and QC - Concept and requirements QA and QC w.r.t- Raw materials, methods of manufacturing, in process items, finished products, labels and labeling and packaging materials. Control of microbes during the manufacturing process. Documentation and Regulation of QA and QC with example- FSSAI (regulatory agency). Concept of HACCP with principles. 	15

Course Code BNBUSBT6T3	Course Title	Credits 2.5	No. of lectures
Learning Outco 1. Elucidate 2. Obtain cla 3. Ability to	Pharmacology and Neurochemistry omes: Learners will be able to: the concepts of pharmacology. writy about mechanism of absorption of drugs from different ti examine the mechanism of different poisons and toxins. iliarity with current literature related to functions and dise smitters.	ssues.	
Unit I: General principles of Pharmacology	 Clinical testing of drugs Phases of clinical investigation, Special populat reaction surveillances Receptors, Drug receptors and biological responses Second-messenger systems The chemistry of drug-receptor binding Dynamics of drug receptor binding Dose-response relationship Therapeutic index, ED, LD Equations derived from drug receptor interactions Potency and Intrinsic Activity Drug antagonism 	ion, Adverse	15
Unit II: Drug Absorption and Distribution	 Absorption of drugs from the alimentary tract Factors affecting rate of gastrointestinal absorption – Absorption of drugs from lungs, skin Absorption of drugs after parenteral administrat influencing drug distribution Binding of drugs to plasma proteins Physiological barriers to drug distribution 	ion factors	15
Unit III: Basic and regulatory Toxicology	 Background Definitions - Causation: degrees of Classification Allergy in response to drugs Effects of prolonged adm chronic organ toxicity Adverse effects on reproduction Poisons: Deliberate and accidental self-poisoning P treatment Poison-specific measures General measures Specific poisonings: cyanide, methanol, ethyle hydrocarbons, volatile solvents, heavy metals, her pesticides, biological substances (overdose of medici dealt with under individual agents) Incapacitating agents: drugs used for torture - Nonme drugs 	ninistration: rinciples of me glycol, bicides and nal drugs is	15

Unit IV: Neurochemistry	 Types of nervous systems (an overview) Types of neurons and their structure Chemical impulses and electrical impulses Chemical- acetylcholine receptors, action potential Electrical - gap junctions and synapses Neuronal excitation and inhibition Action of Neurotoxins and neurotransmitters Tetrahydrocannabinol- As an example of drugs affecting the action of neurotransmitters 	15
----------------------------	--	----

Course Code BNBUSBT6T4	Course TitleCreditsApplications of Biotechnology, Gene sequencing & editing and Environmental BiotechnologyCredits 2.5	No. of lectures
 Apply know Understand Learn about of potable 	nature of sewage and treatment of wastewater before it is relea	-
Unit I: Applications of Biotechnology	 Heterologous protein production: available systems, their pros and cons Production of human insulin in E. coli Vaccines: advantages of modern vaccines over traditional ones Production of vaccine using RDT: a. Subunit vaccines (HSV) b. Peptide vaccine (FMDV) c. Attenuated vaccine (cholera) d. Edible vaccines Diagnostics: DNA molecular testing: SCA Therapeutics: Gene therapy DNA typing: principle, methodology and applications Introduction to microarrays- only basic Biosensors: general features, types, microbial biosensor for pollution detection 	15
Unit II: Gene sequencin and editing	 A. DNA sequencing Methods: Sanger's dideoxy method Automated DNA sequencing Pyrosequencing Human genome project Gene Editing Tools RNAi (siRNA, miRNA,) ZNF (Zinc finger nucleases) TALENS (Transcription Activator Like Effector Nucleases) CRISPER/ Cas system (Clustered Regularly Interspersed Repeats) 	15
Unit III: Environmental Biotechnology-	nathogens transmitted through water	15

	 filtration, Reverse osmosis, Disinfection: Chlorine and Ozone treatment and UV disinfection 3. Routine bacteriological analysis of water: Indicator organisms and their detection in water- Presumptive, Confirmed, Completed tests, Total Coliforms, Fecal Coliforms, Fecal Streptococci, <i>Clostridium perfringens</i> B. Domestic sewage treatment Ecology of wastewater Nature of wastewater Modern Waste Water treatment: Primary, Secondary and Tertiary Treatment Oxidation Ponds and Septic tanks Sludge Processing; Disposal of treated waste water and Biosolids 	
Unit IV: Environmental Biotechnology-II	 Biological processes for industrial effluent treatment: Aerobic biological treatment- activated sludge process, CASP, advanced activated sludge processes (Nitrogen and Phosphorous removal), Solid waste treatment Biological filters, RBC, FBR Anaerobic biological treatment- contact digesters, packed bed reactors, anaerobic baffled digesters, UASB Pollution indicators & biosensors Biodegradation of xenobiotics- persistent compounds, chemical properties influencing biodegradability, microorganisms in biodegradation Use of immobilized enzymes or microbial cells for treatment; Packaged organisms and genetically engineered organisms in waste treatment 	15

Course Code BNBUSBT6T5	Course TitleCreditsAgribiotechnology2	No. of lectures
 Explain di Describe c Understan 	omes: Learners will be able to: fferent criteria to be considered for greenhouse design and construction lifferent interactions of plants with pathogens d applications of molecular markers in plants ble of microorganisms in plant growth promotion	
Unit I: Agriculture and Agriculture systems	 Introduction to Agriculture and Agriculture systems Greenhouse Technology- Agroclimate, Types of greenhouses, importance, functions and features of green house, Design criteria Construction material, covering material and its characteristics, growing media, green house irrigation system, nutrient management. Greenhouse heating, cooling and shedding and ventilation system, Greenhouse environmental control (computerized control- overview) Phytotrons, fertigation and roof system. 	12
Unit II: Plant stress biology	 Stress physiology Introduction Types of stress- Abiotic, Biotic Abiotic Stress- Types of Abiotic stress and physiological responses Molecular responses of plants to different stress conditions- (water stress, salinity stress, temperature stress - heat and cold, Photooxidative stress): stress perception and stress signaling pathways Biotic stress - plant interaction with bacterial, viral and fungal pathogens, Systemic and induced resistance: pathogen derived resistance, signaling Plant responses to pathogen - biochemical and molecular basis of host - plant resistance, toxins of fungi and bacteria 	12
Unit III: Molecular Markers in Plant Breeding	 Genetic markers in plant breeding- Classical markers, DNA markers (RFLP, RAPD, AFLP, SSR, SNP). Application of Molecular Markers to Plant Breeding [quantitative trait locus (QTL) mapping] Plant DNA Barcoding- Barcoding Markers (matK, rbcl, ITS, tmH-psbA), steps, recent advances, Benefits, Limitations 	12

Unit IV: Biofertilizers and Biopesticides	 Biofertilizer: Nitrogen - fixing Rhizobacteria - Symbiotic Nitrogen Fixers. Nonsymbiotic Nitrogen Fixers Plant Growth Promoting Microorganisms- Phosphate Solubilizing Microbes (PSM), Phytohormones and Cytokinins, Induced Systemic Resistance Plant Growth Promotion by Fungi- Mycorrhizae Arbuscular Mycorrhizae Ectomycorrhizae Microbial Inoculants - Inocula, Carriers, and Applications, Monoculture and Co-culture Inoculant Formulations Biocontrol, Polymicrobial Inoculant Formulations Biopesticides – types, <i>Bacillus thuringiensis</i>, insect viruses and entomopathogenic fungi (characteristics, physiology, mechanism of action and application) 	12

Course Code BNBUSBT6P1	Course Title Practical Based on BNBUSBT6T1 & BNBUSBT6T2	Credits 3	No. of lectures
1.	Determination of Vit C by DCPIP method from food samples		
2.	Estimation of milk protein- Pyne's method		
3.	DMC of milk sample		
4.	Isolation of Normal flora from Milk and curd		
5.	Phosphatase test		72
6.	Plate counts (SPC, LPC, Thermophilic and psychrophilic and c counts for provided milk sample)	oliform	
7.	Validation/ Calibration of instruments. a. Measuring cylinder b. Weighing balance c. Micropipette d. Colorimeter		
8.	Bioassay of antibiotic		
9.	Determination of serum cholesterol (total, HDL and LDL ratio))	

Course Code BNBUSBT6P2	Course Title Practical Based on BNBUSBT6T3 & BNBUSBT6T2	Credits 3	No. of lectures
1.	To detect the levels of antibiotics in body fluids using agar cup method.		
2.	LD 50, ED 50 evaluation using suitable models e.g., Daphnia		
3.	Study of the effect of heavy metals on bacterial growth.		
4.	 Routine analysis of water: a. Standard Plate Count b. Detection of Coliforms in water: Presumptive Test, Conf Test and Completed Test, Eijkman test 	ïrmed	
5.	Rapid Detection of <i>E.coli</i> by MUG Technique (Demonstration)		72
6.	Study of microbial flora in raw and treated sewage		
7.	Determination of Total Solids from an effluent sample.		
8.	 Study of physico-chemical parameters of any one industrial effl sample: a. pH, color b. Turbidity c. BOD d. COD 	uent	
9.	Estimation of chromium from Effluents		
10.	Visit to ETP/ CETP		

Course Code BNBUSBT6P3	Course Title Practical Based on BNBUSBT6T5	Credits 2	No. of lectures
1.	RAPD analysis (demonstration experiment)		
2.	Isolation of Azospirillum		
3.	Isolation of Phosphate solubilizing bacteria		
4.	Study of effect of abiotic stress on plants		
5.	Rapid screening tests for abiotic stress tolerance		48
6.	Estimation of antioxidant – Ascorbate		
7.	Estimation of antioxidant enzyme activity a. Catalase b. Peroxidase		
8.	Visit to green house facility and submission of field visit report.		

References:

SEMESTER-V

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	The Cell: A Molecular Approach	Geoffrey N. Cooper	Sinauer Associates Inc	4 th	2007
2.	Cell Biology	Thomas Pollard	Elsevier	3 rd	2017
3.	Cell and Molecular Biology	Karp	John Wiley & Sons, Inc	6 th	2010
4.	Cancer biology	Ruddon, R. W.	Oxford University Press	4 th	2007
5.	Developmental Biology	Scott Gilbert	Sinauer Associates Inc.	9 th and 12 th	2010, 2012

BNBUSBT5T1 Cell biology:

BNBUSBT5T2 Microbiology and Instrumentation:

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Cann Principles of Molecular Virology	Alan Cann	Elsevier Academic Press	4^{th}	2005

2.	Fundamentals of Molecular Virology	Nicholas Acheson	John Wiley & Sons, Inc.	2 nd	2011
3.	Understanding Viruses	Teri Shors	Jones & Bartlett Learning	2 nd	-
4.	Prescott,Harley, and Klein's Microbiology	Willey, Sherwood, Woolverton	McGraw-Hill	7 th	2008
5.	Principles of Virology	Flint, Racaniello, Rall, Skalka, Enquist	ASM Press	4 th	2015
6.	Introduction to Modern Virology	Dimmock, Easton & Leppard	Wiley Blackwell	7 th	2016
7.	Virology: Principles & applications	Carter & Saunders	John Wiley & Sons	_	2007
8.	General Enzymology	Dr. N .S.Kulkarni	Himalaya publishing house	1 st	2007
9.	Understanding Enzymes: An Introductory Text	Dr. Aditya Arya	Drawing Pin Publishing, New Delhi, India	1 st	2019
10.	Physical biochemistry - Applications to Biochemistry and	David Freifelder	W. H. freeman & Co, New York	2 nd	

	Moleculkar Biology				
11.	Biophysical Chemistry Principles and Techniques	Upadhyay, Upadhyay and Nath	Himalaya Publications		
12.	Principles and Techniques of Biochemistry and Molecular Biology	Keith wilson and john walker	Cambridge University Press	7 th	
13.	iGenetics: A Molecular Approach	Peter J. Russell	Pearson Education, Inc., publishing	3 rd	
14.	Principles of gene manipulation and genomics	Sandy B. Primrose, Richard Twyman, Bob Old	John Wiley and Sons Ltd	7 th	
15	A review of imaging techniques for systems biology Radiology book chapter on Fundamentals of PET and PET/CT Imaging , Ronald B. Workman	Kherlopian AR			
16	Biomedical Imaging Techniques	SS Ilangovan, 2017			
17	Intro to instrumentation in	Bisen Prakash			

life science Singh

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	iGenetics	Peter Russell	Pearson Education Inc.	3 rd	2010
2.	Principles of gene manipulation and genomics	Primrose, S. B., & Twyman, R.	John Wiley & Sons.	7 th	2006
3.	Biotechnology: Fundamentals And Applications	S. S. Purohit	Agrobios (India)	4 th	2005
4.	Molecular biotechnology: principles and applications of recombinant DNA.	Glick, B. R., Pasternak, J. J. & Patten	ASM press, Washington DC	4 th	2010
5.	Biotechnology Expanding Horizons	B. D. Singh	Kalyani publication	1 st	2014

BNBUSBT5T3 Genomes and Molecular biology:

BNBUSBT5T4 Marine Biotechnology:

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Springer handbook of	Se-Kwon Kim	Springer	-	-
	marine	(Ed.)			

	Biotechnology				
2.	Encyclopedia of life sciences	Paul Snelgrove	-	-	2003

BNBUSACBT5T1 Bioinformatics and Biostatistics:

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Biostatistics for the Biological and Health sciences with Statdisk	Marc M. Triola and Mario F. Triola	Pearson Education Limited	1 st	2012
2.	Biostatistics	P.N. Arora	Himalaya Publishing House	-	2012
3.	Basic Bioinformatics	S. Ignacimuthu	Alpha Science International Ltd.	2 nd	2013
4.	Essential Bioinformatics	Jin Xiong	Cambridge University Press	-	2006
5.	Bioinformatics: A practical guide to the analysis of genes and proteins, (2001), New York.	Baxevanis, A. D. and Ouellette, B. F. F.;			
6.	Bioinformatics Sequence and Genome Analysis	Mount David	Cold Spring Harbor Laboratory Press, New		

(2004),	York.	

SEMESTER-VI

BNBUSBT6T1 Biochemistry:

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Harper's Illustrated Biochemistry	Robert K. Murray	McGraw Hill	26 th	2003
2.	Principles of Biochemistry	Lehninger	W.H. Freeman & Company	6 th	2013
3.	Biochemistry	U. Satyanarayana and Chakrapani	Elsevier	4 th	2013
4.	Principles of Biochemistry	ry - Nelson and Cox,	W. H. Freeman & Co. Ltd.	4 th	2004
5.	Biochemistry	Berg, Tymoczko, Stryer	W. H. Freeman and Company	6 th	2007
6.	General Microbiology	Stanier, Ingraham, Wheelis, Painter	Prentice-Hall	5 th	1987
7.	Zubays Principles of	Veer Bala Rastogi, K R	Medtech	5 th	2017

	Biochemistry	Aneja			
8.	Nutrition science	B. Srilakshmi	Srilakshmi Publications	6 th	2017
9.	Biochemistry	Satyanarayana and Chakrapani	Books and Alliance Pvt. Ltd.	4 th	2017

BNBUSBT6T2 Industrial Microbiology:

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Applied Dairy Microbiology	Elmer.H. Marth, James. L. Steele	Mercel Dekker Inc.	2 nd	
2.	Dairy Technology	Yadav and Grower			
3.	Fundamentals of Microbiology	Frobisher	W.B Saunders Company	9 th	
4.	Industrial Microbiology	A. H. Patel	Laxmi Publications	2 nd	2011
5.	Modern industrial Microbiology and biotechnology	Nduka Okafor	Science publisher	1 st	2007
6.	Fermentation Technology	H.A. Modi	Pointer Publishers	-	2011
7.	Pharmaceutical Microbiology	Hugo, W.B. Russel	Oxford black scientific	6 th	

			publishers		
8.	FSSAI Manual ob GLP.				
9.	Food Microbiology	W.C Frazier	McGraw Hill	5 th	2014

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Modern Pharmacology with clinical applications	Charles R. Craig and Robert E. Stitzel	Lippincott Williams and Wilkins	5 th	2003
2.	Clinical Pharmacology	Bennet P.N, Brown M.J, Sharma.P	Elsevier	11 th	
3.	Toxicology- The basic science of poisons	Casarett and Doull's by Kurtis Klaassen	McGraw Hill	9 th	-
4.	Biochemistry	Metzler D.E	Elsevier	-	-
5.	Textbook of Medical Physiology, Guyton	A.C and Hall	J.E. Saunders	11 th	-
6.	The Cell : A Molecular Approach	Geoffrey.M Cooper, Rober Hausman	Sinauer Associates Inc.	6 th	2013

BNBUSBT6T3 Pharmacology and Neurochemistry:

BNBUSBT6T4 Applications of Biotechnology:

Sr. Title No.	Author/s	Publisher	Edition	Year
------------------	----------	-----------	---------	------

1.	https://www.nature.com/scitable/topicpage/dna-sequencing-technologies-key-to- the-human-828/						
2.	https://journal	s.sagepub.com/doi/fu	.11/10.1080/019262	3070119710	7		
3.	http://www.geneth	erapynet.com/gene-ec	liting-tools/zinc-fir	nger-nuclease	<u>e.html</u>		
4.	https://www.scie	encedirect.com/topics	/neuroscience/zince	-finger-nucle	ase		
5.	_	ww.ncbi.nlm.nih.gov/ v.genetherapynet.com	-				
6.	https://www.neb.com/tools-and-resources/feature-articles/crispr-cas9-and-targeted-genome-editing-a-new-era-in-molecular-biology https://www.takarabio.com/learning-centers/gene-function/gene-editing/gene-editing-technology-overviews/introduction-to-the-crispr/cas9-system https://www.annualreviews.org/doi/full/10.1146/annurev-biophys-062215-010822?url_ver=Z39.88-2003𝔯_id=ori%3Arid%3Acrossref.org𝔯_dat=cr_pub%3Dpubmed						
7.	iGenetics	Peter Russell	Pearson Education Inc.	3 rd	2010		
8.	Gene cloning and DNA analysis	T.A.Brown	Wiley Blackwell	6 th	2010		
9.	Molecular Biology	David Friefelder	Narosa	2 nd	2004		
10.	Environmental Microbiology	Raina M. Maier, Ian L. Pepper, Charles P.Gerba,	,Academic Press	2 nd	2010		
11.	Fundamental Principles of	A.J. Salle	Tata Mc Graw Hill	7 th			

	Bacteriology		Publishing Company		
12.	Fundamentals Of Microbiology	Martin Frobisher			
13.	Basic Principles of wastewater treatment	Marcos von Sperling			
14.	Environmental biotechnology (Industrial pollution management)	S. N. Jogdand			
15.	Environmental Biotechnology	Jordening-and- winter			
16.	Environmental biotechnology	Alan Scragg		2 nd	2005
17.	Environmental biotechnology basic concepts and applications by	Indushekhar Thakur			
18.	Recombinant DNA Genes and Genomes A Short Course	Watson, J. D., Watson, C., Gilman, M., Witkowski, J. A., Zoller, M., & Witkowski, J.	Macmillan.	3 rd	1992
19	Biotechnology Expanding Horizons	B. D. Singh	Kalyani publication	1 st	2014
20	A Textbook of Biotechnology	R C Dubey	S. Chand Publishing	$4^{ m th}$	1993

21	Molecular biotechnology: principles and applications of recombinant DNA.	Glick, B. R., Pasternak, J. J. & Patten	ASM press, Washington DC	4 th	2010

BNBUSACBT6T1 Agribiotechnology:

Sr. No.	Title	Author/s	Publisher	Edition	Year				
1.	Agricultural systems (Agroecology and rural innovation)	Seiglinde Snapp and Barry Pound	Elsevier	2 nd	2017				
2.	Sustainable Crop Protection under Protected Cultivation	P. Parvatha Reddy	Springer		2016				
3.	http://ecoursesonline.iasri.res.in/mod/page/view.php?id=1612								
4.	https://ncert.nic.in/vocational/pdf/kepc104.pdf								
5.	Introduction to Plant Physiology	William G. Hopkins and Norman P. A. H ¨uner	Wiley	4 th	2008				

6.	Biotic interactions in plant - pathogen association	M. J. Jeger			2001
7.	Comprehensive and Molecular Phytopathology	Yuri Dyakov, Vitaly Dzhavakhiya, Timo Korpela	Elsevier	1 st	2007
8.	Plant Physiology	Taiz &; Zeiger	Springer		
9.	Plant Breeding from Laboratories to Fields Edited	Sven Bode Andersen			
10.	(Article) QTL mapping and its applications in crop plants	B M Prasanna			
11.	Plant DNA Barcoding and Phylogenetics	Ali, Gyulai, Al- Hemaid			2015
12.	Advances in Applied Microbiology 82	Sima Sariaslani and Geoffrey M. Gadd	Elsevier	1 st	2013
13.	Biotechnology for Sustainable Agriculture	Ram Lakhan Singh, Sukanta Mondal	Elsevier	1 st	2017

Evaluation Scheme

Internals:

Class test	Assignment/ Study tour with report/Journal Movie club presentation/ Presentation of mini-research project work/ volunteering for Department fest/ poster making/ exhibition/ Departmental contribution/ case study presentation/Review writing	Attendance, Active Participation and Leadership Qualities	Total
20	10	10	40

Internal Examination: Based on Unit 1 / Unit 2 / Unit 3 / Unit 4

Duration: 40 mins Total Marks: 20

No. of Questions: 15

Q. 1	1 Answer the following choosing the correct alternative.								10
	1	Based on U	nit I	/ II / III/ IV					
	a		b		С		d		
	2	Based on U	nit I	/ II / III/ IV					
	Α		b		С		d		
	3	Based on U	nit I	/ II / III/ IV					
	Α		b		С		d		
	4	Based on U	Init I	/ II / III/ IV					
	Α		b		С		d		
	5	Based on U	nit I	/ II / III/ IV					
	Α		b		С		d		
	6	Based on U	nit I	/ II / III/ IV					
	Α		b		С		d		
	7	Based on U	nit I	/ II / III/ IV					
	Α		b		С		d		
	8	Based on U	Init I	/ II / III/ IV					
	Α		b		С		d		
	9	Based on U	nit I	/ II / III/ IV					
	Α		b		С		d		
	10	Based on U	nit I	/ II / III/ IV					
	Α		b		С		d		
Q.2	Ans	swer the foll	owin	g choosing the cor	rect a	lternative.			10
	1	Based on U	nit I	/ II / III/ IV					
	Α		b		С	(d		

2	Based on Unit I	Based on Unit I / II / III/ IV						
А	b	С	d					
3	Based on Unit I	/ II / III/ IV						
А	b	C	d					
4	Based on Unit I	/ II / III/ IV						
А	b	C	d					
5	Based on Unit I / II / III/ IV							
A	b	С	D					

Theory Examination: Suggested Format of Question paper

Duration: 2 Hours Total Marks: 60

All questions are compulsory

Q. 1	Answer any two of the following							
	A	Based on Unit I						
	B Based on Unit I							
	C	Based on Unit I						
	D	Based on Unit I						
	1							
Q. 2	Answer any two of the following							
	A	Based on Unit II						
	В	Based on Unit II						
	C	Based on Unit II						
	D	Based on Unit II						
	1							
Q. 3	An	swer any two of the following	12					
	A	Based on Unit III						
	В	Based on Unit III						
	C	Based on Unit III						
	D Based on Unit III							
	1		1					

Q. 4	Answer <i>any two</i> of the following					
	А	Based on Unit IV				
	В	Based on Unit IV				
	C	Based on Unit IV				
	D	Based on Unit IV				
Q. 5	An	swer <i>any six</i> of the following	12			
_	a	Based on Unit I				
	b	Based on Unit I				
	c	Based on Unit I				
	d	Based on Unit II				
	e	Based on Unit II				
	f	Based on Unit II				
	g	Based on Unit III				
	h	Based on Unit III				
	i	Based on Unit III				
<u> </u>	j	Based on Unit IV				
	k	Based on Unit IV				
	1	Based on Unit IV				

	Theory						Practical		
Course Code	Inter nal	Min marks for passing	Theory Examinatio n	Min marks for passin g	Course Code	Practical Examinat ion	Min marks for passing		
BNBUSBT5T1	40	16	60	24	BNBUSBT5P1	100	40		
BNBUSBT5T2	40	16	60	24					
BNBUSBT5T3	40	16	60	24	BNBUSBT5P2	100	40		
BNBUSBT5T4	40	16	60	24					
BNBUSBT5T5	40	16	60	24	BNBUSBT5P3	100	40		

Marks Distribution and Passing Criterion for Each Semester

	Theory	Practical					
Course Code	Internal	Min marks for passing	Theory Examination	Min marks for passin g	Course Code	Practical Examina tion	Min marks for passing
BNBUSBT6T1	40	16	60	24	BNBUSBT6P1	100	40
BNBUSBT6T2	40	16	60	24			
BNBUSBT6T3	40	16	60	24	BNBUSBT6P2	100	40
BNBUSBT6T4	40	16	60	24			
BNBUSBT6T5	40	16	60	24	BNBUSBT6P3	100	40

.....

Practical Examination:

• Would be conducted over a period of 3 days; 50M each paper.

• Each student would be involved in research project for duration of at least 1 month (full-time)

/ Internship for duration of at least 1 month (full-time)/ Entrepreneurial work (**50M**)

• Sem VI would have ONLY project/ Internship/ Entrepreneurial work presentation

• Practical Examination of 100 M for Applied component would be conducted over a period of 2 days

Research Project

Students would undertake a project for at least 1 month during the last semester and submit the project report signed by research guide

The project should include either of the following:

- One/ more major instrumentation OR
- One / more major technique/s required in the field of interest OR
- Bioinformatics OR
- Biostatistics

Internship:

- Students would undertake internship in pathology laboratory or biotechnology/ pharmaceutical industry
- They would submit the internship report signed by concerned authority as well as present the work done

Entrepreneurial work:

Students would work upon an entrepreneurial idea related to the field of Biotechnology and submit the report signed by guiding teacher. The report and presentation during the exam should include:

- Uniqueness of idea
- Planning & Execution
- Prototype
- Regulatory certifications required for selling the idea or product
- Cost analysis